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Abstract

Condensed Matter physics is a branch of Physics which includes the laws of quantum
mechanics, electromagnetism and statistical mechanics. In this area, we consider a
two-dimensional electron gas (2DEG), which can be defined as a system of electrons
that are confined by opposing forces to a thin planar region.
Nowadays, it is more interesting to study the impact of the geometry or of some
topological defects introduced on the sample, to get closer of reality.
In the work that we have proposed to realize, we have considered a sample immersed
on a magnetic field. Or more simply, we wanted to study the Hall effect for particu-
lar cases, on usual semiconductors. In fact, we have tried to understand how we can
influence the behavior of the Hall conductivity, with a curved surface (rather than
the flat case) and by introducing some topological defects.

In a first work, we have considered the single cone immersed into a magnetic
field. We realized that we can consider the conical tip in two different ways : with
and without a singularity at the tip. We saw that we obtained different Landau
Levels LL, which change the type of plateaus that we obtain and the shifting in the
Hall conductivity. After discussing this, we changed some parameters (the opening
angle α of the cone, the geometric potential) to see how this influenced the Hall con-
ductivity when we varied the magnetic field. We compared two types of geometric
models : the da Costa and the Dirac models.

In a second work, we have studied the effect of a screw dislocation on the Hall
conductivity. For that, we have changed the torsion parameter of the medium β.
We did not observe any shift of the Hall conductivity, but we noticed a change of
the size of the conduction plateaus. In order to appreciate the presence of both a
screw dislocation and a disclination, we have considered a 2DEG with a dispiration.
By changing α, which is the deficit/excess angle, we obtained, this time, a shift of
the Hall conductivity.

In summary, we tried to explain the behaviour of the Hall conductivity in the
presence of singularities and how taking into account the geometry is important.

Key words : 2DEG, Landau Levels, Hall Conductivity, defects
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Introduction

Condensed Matter physics finds its starting point in the solid-state theory. In fact,
we observed that some theories and concepts could be extended to the study of
fluids. Indeed, the properties of a quantum fluid constituted by the conduction elec-
trons in a metal is very similar to those of a fluid made up of atoms, like the strong
similarity between conventional superconductivity and superfluidity in helium-3.
In this research area, we consider the system of a two-dimensional electron gas
(2DEG), which has become an important branch of science [1]. We can simply de-
fine this kind of system as a system of electrons that are confined by opposing forces
to a thin planar region adjacent to an interface or within a thin layer of material. But
this electrons are free to move along the plane scattering off each other. The scale of
this research is limited to micro-macroscopic, which can be studied in the laboratory.

We said that these electrons are free to move. This is true until we introduce
an external parameter (for example a magnetic field) causing physical effects such
as: Kondo effect, plasmon, quantum Hall effect, Wigner crystal, strongly correlated
electrons, photoluminescence, etc. All of those effects permit us to realize the study
of our sample and if possible, make new discoveries to improve the already existing
technologies. We can also introduce defects, which can be defined as an imperfection
in a periodic crystal structure. We can encounter different kinds of defects. The
point defects, which occur only at or around a single lattice point (such as vacancy
defects, interstitial defects and impurities), the line defects (dislocations, disclina-
tions), the planar defects (grain boundaries, antiphase boundaries), and to finish,
the bulk defects.

In our case, we focused our attention in the quantum Hall effect on usual semi-
conductors. But we will not consider a common semiconductor. Indeed, we wanted
to combine the quantum Hall effect with curvature effects. The curvature effects
just means that we do not find ourselves in the simplest case that we know, which
is the flat case, but in a more complex geometry, such as spherical, cylindrical or
conical [2, 3, 4, 5]. Over the last years, technological advances have made possible
the investigation of non-planar two-dimensional electron gas (NP2DEG) [4, 6, 7, 8].
Bilayer graphene sheets are candidates in order to explore phenomena induced by
geometry in NP2DEG [9]. The Hall conductivity (or resistance) is topologically
stable, but the curvature can change the plateau widths and shift the steps in the
Hall conductivity [4]. This induces novel phenomena which might be important to
engineering quantum devices [9].
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The second interesting thought would be the investigation on how topology can
influence all types of quantum Hall effect. Since this is not a simple task, we think
that we must consider also usual semiconductors. Some ingredients are necessary:
first, we must know how conducting electrons on tridimensional solids are studied
(this is achieved by the Geometric Theory of Defects [10]); then, we have to obtain
the Landau levels LL in a background space with a specific topology (disclination
[11], screw dislocation [12], etc...); at the end, we must investigate how these LL
are affected by singularities[13]. This theoretical investigation started in [14] where
the influence of a topological defects called disclination, on the IQHE was addressed
following this recipe.

A fundamental problem that has been discussed in [15] is how the conical tip
affects the quantum dynamics on a cone. From a mathematical point of view, there
might exist a coupling between the wave functions and the singular scalar curvature
on a cone [16]. However, we think that such a coupling should be investigated in an
experimental point of view. Because of this view, in this work we obtain the Landau
levels on a cone and compare both cases, with and without the singular effect.
For this, we will study the cone with and without singularity at the tip, which are
very close cases, but do not necessarily behave the same way. These two different
studies appear to us very pertinent, because they could allow us, later, to make
progress in the investigation of a graphene sheet.

We will begin our study with theoretical explanations laying down the founda-
tions we need later. So, we will describe the history of the Hall effect (classical and
quantum). After that, begin our research work. The second chapter is a study of
the cone immersed into a magnetic field. But when we began to study this case,
we realized that we can consider the cone in two different ways: with and without
a singularity at the tip. We saw that we obtained different LL, which change the
type of plateaus that we obtain and shift the Hall conductivity. After discussing
this, we tried to change some parameters (the opening angle α of the cone and the
geometric potential) to see how this influenced the Hall conductivity when we varied
the magnetic field. This comparision will be explained first from a mathematical
point of view, and then simulated by using the software Maple16.
In the third chapter, we will realize the same kind of study, but now it is for a
topological defect introduced on a semiconductor. We studied the effect of a screw
dislocation on the Hall conductivity. For that, we changed the torsion parameter of
the medium β. We did not observe any shift of the Hall conductivity, but we noted
a changing of the size of conduction plateaus. In order to appreciate the presence
of both a screw dislocation and a disclination, we have considered a 2DEG with
a dispiration. By changing α, which is the deficit/excess angle, we obtained, this
time, a shift of the Hall conductivity.

In these two works, we will consider a 2DEG with a screw dislocation. We
start by considering a tridimensional solid. The electrons are constrained to a thin
interface so the quantum Hall effect can manifest itself. We ignore the fractional
quantum Hall effect (FQHE) since the Landau quantization is enough to understand
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the IQHE. We consider the fundamental state, T = 0K. We do not consider the tem-
perature smearing of the steps of the quantized conductivity[4]. As we said above,
our contribution can find place only in usual semiconductors, but we think that
understanding how topological defects affect the QHE in this class of materials is a
first step to explore the influence of topology on the QHE in other types of materials.

The work presented here is still in progress, so further analysis must be done in
order to make a connection with experiments.
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Chapter 1

Hall Effect

The Hall effect was discovered in 1879 by Edwin Herbert Hall, during his doctoral
degree. He tried to answer a question of James Clerk Maxwell, which was : is the
resistance affected by the magnetic field ? He could answer this question experi-
mentally, by using a gold leaf. He managed to highlight the presence of a potential
difference VH , or Hall voltage, between the opposite sides of the gold leaf when it is
traversed by electric current, and subjected to a perpendicular magnetic field. This
is the effect of a magnetic field on a conductive material through which passes an
electric current, which carries the name "Hall Effect".

1.1 Some generalities about the classical Hall Ef-

fect

Let us consider a metallic sample under the same conditions as the Hall’s experi-
ment succinctly described previously. The sample is bi-dimensional, i.e. a sample
so thin that electrons are confined in x- and y-directions, for greater sensitivity. It
is traversed by a current I, in the x-direction and immersed in an electromagnetic
field in z-direction, Bz, Figure 1.1 (a).

For the classical Hall effect, when we have not any magnetic field, i.e. B = 0T,
the charge carriers (electron-hole) simply move through the sample in a straight
line. So the resistivity is null. However, when a magnetic field with a perpendicular
component is applied, their paths are curved. So that moving charges accumulate on
one face of the material and induce an electric field. This phenomenon, the curvature
of the path of the electrons, happens under the influence of the Lorentz force, due
to the electromagnetic field. This implies two types of resistivity : longitudinal
resistance and transverse resistance. The longitudinal resistance is the measurement
of the parallel resistivity to the current, and the transverse resistance, also called
Hall resistance (RH), is the mesurement of the perpendicular resistivity. If we plot,
Figure 1.1 (b) this second resistance depending of the magnetic field, we find a linear
variation
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RH =
B

en
, (1.1)

where e is the carrier charge and n the 2D carrier density.

(a) (b)

Figure 1.1: (a) 2D metal traversed by an electric current and subjected to a magnetic
field (b) Representation of a Hall resistance depending of the magnetic field. We
note that we have a linear variation of the Hall resistance when we increase the
magnetic field.

One hundred years later, in 1980, Klaus von Klitzing found the Quantum Hall
Effect (QHE), or more precisely te Integer Quantum Hall Effect (IQHE).
To show the Quatum Hall Effect, we need to consider a material with a gap energy
between the valence band and the conduction band, such as metals or semicon-
ductors. For example the transistors, or Metal-Oxide-Semiconductor Field-Effect
Transistors (MOSFET), where the metallic layer is separated from a semiconductor
by an insulating oxide layer. He received for this the Nobel Prize in 1985.

1.2 Some generalities about Quantum Hall Effect

The IQHE occurs for a two-dimensional electron system, in the presence of large
magnetic field strength and low temperature (≈ 50mK), when the energy scale set
by the temperature kBT is significantly smaller than the Landau Level (LL) spacing
~wC . We can describe this kind of effect like quantization of the Hall resistance,
which is no longer linear in B. Now, the Hall resistance reveals plateaus at particular
values of the magnetic field. At each step, these plateaus vary by an integral multiple
of h/e2, where h is Planck’s constant. So now, we have, for the Hall resistance

RH =

(

h

e2

)

1

n
, (1.2)

where n is a nonzero integer. These plateaus are accompanied by a vanishing longi-
tudinal resistance, as we can see in Fig. 1.2.
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Figure 1.2: The red line is the Hall resistance and the green line the Shubnikov-de
Hass oscillations or longitudinal resistance. We observe plateaus of conductivity for
the Hall resistance, and for these plateaus, we have the longitudinal resistance which
is zero [17].

At low temperatures, in the presence of very intense magnetic fields, the Shubnikov-
de Haas effect appears. It is a macroscopic effect which is generated by the intrinsic
quantum mechanical nature of matter. In our case, the peaks in the Shubnikov-de
Hass oscillations occur at the same magnetic fields as the changes of the plateaus
of Hall resistivity. We can explain these occurrences by the fact that when we
apply a magnetic field on a 2DEG, the electrons perform a circular motion in the
bulk. These electrons perform this movement in a well-defined sense. For example, if
there is a negatively charged impurity (-), they rotate in the clockwise direction, and
counter-clockwise for a positively charged impurity (+). In the border regions of the
sample, the electrons cannot perform full circular motions, so they just follow the
edge, moving parallel to the edge of the sample. We can observe this phenomenon
in the Fig. 1.3.

These scattering events give to these electrons a higher energy. The eigenvalue
energy of the circular motion of these electrons are the same as for the harmonic
oscillator with the eigenfrequency ωC

ωC =
eB

m
, (1.3)

where ωC is the cyclotron frequency and m the effective mass of the electrons.

In the presence of a magnetic field, if we calculate the energy levels of the 2DEG,
we can notice that they are quantized into discrete levels, called Landau levels.
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Figure 1.3: Here is a sample whose length L is much larger than the width W , where
we will see that the electrons near the edge have a displacement parallel to the edges
of the sample and the core electrons a circular motion, whose the direction depends
on the sign of the impurities [17].

1.3 Landau quantization

The Landau quantization can be simply explained as the kinetic-energy quantization
of a 2D particle in a perpendicular magnetic field. Effectively, in the presence of a
magnetic field, the electronic continuum of states that we had in the case of conven-
tional Hall effect is quantified in energy levels or Landau Levels (LL), according to
the expression : En = ~wC(n+1/2). These levels are eventually split into electronic
sublevels spin parallel or antiparallel to the field, due to the Zeeman effect or other
mechanisms related to electron-electron interactions and will not be discussed here.
Thereby, the more we increase the magnetic field, the more the difference between
two adjacent energies grows. In fact, as we have told before, the difference between
two LL is ~wC , and from Eq. (1.3), we find ~wC = ~

eB
m

. Then, the energy gap be-
tween two levels depends on the magnetic field. We can conclude, when we observe
the Figure 1.4 that the more we increase the magnetic field, the less LL we have
below the Fermi-energy level.

So, let us consider a simple case of a particle confined to the xy-plane. We
have the Landau gauge AL = B(−y, 0, 0) and the resulting Hamiltonian for non-
relativistic 2D charged particles

H =
1

2m
(p − eA)2 + V (y), (1.4)

with V(y) the confinement potential of the electrons in the sample and p = (px, py, pz)
is the momentum which is the constant of motion. If we do not consider the edges
states, we consider just the bulk, we have V (y) = 0, so simply
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Figure 1.4: Evolution of the Landau Levels when we increase the magnetic field.
We can see that the more we increase the magnetic field B, the less LLs are under
the Fermi-energy level [17].

H =
1

2m
(p − eA)2 . (1.5)

The translational invariance along the x-direction means that the wave functions
have the following form

ψ(x, y) = eikxψ(y). (1.6)

We know too that Hψ(x, y) = Eψ(x, y), so

Eψ(y) =

(

P 2
y

2m
+

1

2
mω2

C(y − yc)
2

)

ψ(y), (1.7)

where ωc is the cyclotron frequency. In the center of the sample, the potential
V(y) is zero and the energy levels does not depend of the position yc, so the energy
levels are independent of the position and we find the same case as the harmonic
oscillator. We can write

E = ~wC

(

n+
1

2

)

, (1.8)

where n is an integer, the LL number. If we plot few of these levels, we obtain the
Fig. 1.5, where we can see that we have the same distance between two consecutive
levels.
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Figure 1.5: LLs for a flat case. This plot indicates that we have a constant energy
interval between two adjacent levels.

1.4 Hall conductivity

When we obtain the LL, we can deduce the Hall conductivity dependence on the
magnetic field. For example, if we take n = n0 − 1, with n = 0, 1, 2, .. and n0 =
1, 2, 3, .., we obtain, from the equation (1.8)

E = ~wC

(

n0 − 1

2

)

. (1.9)

When we calculate n0, in fact, we calculate a starting point for our plateaus,
which will the maximum level that we can treat. This maximum corresponds to
B = 10T here. In this case, we get n0 = 17.5. As n0 (and n) can only be a nonzero
integer, so we take just the integer part of our result. We obtain n0 = 17 which
is going to be the highest level we are going to consider. We must have to do this
calculation for each particular case.
After we were able to determine our n0, we can calculate the magnetic field that
will be required for each following energy levels. So, we determine the quantity of
magnetic field required to move from one state to another, ∆Bn. To determine this
value, we simply calculate the numerical value of the magnetic field at each level of
energy (by diminishing n0 −→ n0 − 1 each time). Finally, we subtract the two by
two consecutive levels, and obtain ∆Bn. When we do this calculation, we determine
in fact just the size of our plateaus, at zero temperature, in the Hall conductivity,
depending on the level changes.

When we have calculated all this, we can then plot the plateaus. In fact, we
start at n0 = 17, in our case, and B = 10T , and while changing the value of the
state n0 (n0 − 1 = n0), we add the ∆Bn one by one. When we plot n0 depending
of B = 10T , we have ν = −σH

σ0

, where σH is the Hall conductivity, σ0(= − e2

h
) is the
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quantum of conductivity, and ν is the filling factor.

If we take the simple case, i.e. a flat case, without any effect, any special geom-
etry, or any defects, we obtain the Fig 1.6.

Figure 1.6: Hall conductivity depending of the magnetic field B for a flat case, at
T = 0K.

The IQHE is not the only known kind of quantum Hall effect. In fact, there
is also the Fractional Quantum Hall Effect (FQHE) that was discovered only three
years later, by Robert Laughlin, Horst Störmer and Daniel Tsui, in a 2D electron
system of higher quality (i.e. higher mobility). The difference with the IQHE it is
that instead of having a strictly integer value for the resistance, we have a value
with a fractional part, for example n = 1/3. The FQHE is due to strong electronic
correlations, when a LL is only partially filled and the Coulomb interaction between
the electrons becomes relevant. But we will not provide further explanations on this
second effect, since it will not be necessary in our study.

Getting back to our graphic (Fig. 1.6), the kind of plateaus that we obtain
depends on many parameters. For example, if the energy levels have a lifting of de-
generacy, if we introduce some kind of deformations, if we change the geometry, etc.
So, for each case that we would like to study, we have to choose good parameters
and see what happens if we change them.

In this Chapter, we studied some generalities about the Hall effect, applied to
a flat case. In the following Chapters, we will discuss the behavior of the Hall
conductivity in the presence of curvature singularities.
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Chapter 2

Integer Quantum Hall Effect on a
cone

After reviewing all of this, we have all the tools to study the consequences of the
Hall effect on a cone. Effectively, we would like to find the consequences for a conical
surface when we apply a magnetic field. In the first time, we will study the Hall
conductivity for a cone with and without singularity at the tip. Then, to go further
in this study, we will change some parameters in our calculations.
In all our investigation we have characterized only the IQHE because if we consider
the FQHE, like we have explained in section 1.4, we have to take into account the
Coulomb interaction, and the problem becomes more difficult. Moreover, this was
not the aim of our study.

2.1 Schrödinger equation and Landau Levels

Let us consider the coordinates of a particle confined to the surface of a cone as











x = l sinα cosϕ
y = l sinα sinϕ
z = l cosα

, (2.1)

where 0 ≤ ϕ ≤ 2π, 0 ≤ α ≤ π and 0 < l < +∞.
Consider an applied magnetic field in the z−direction, ~B = (0, 0, Bz). By us-

ing the Stokes theorem, we can calculate the vector potential ~A. Considering the
equation

~B = ~∇ × ~A , (2.2)

we have
∫

S

~B · d~S ≡
∫

S

~∇ × ~A · n̂dS =
∮

∂L

~A · d~L , (2.3)

where S is a surface in Euclidean three-space, ∂L is its boundary and n̂ is the normal
unit vector to the surface. For a cone, we have

dS = sinαldldϕ (2.4)
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Figure 2.1: A cone immersed in a magnetic field in the z-direction.

and
dL = sinαldϕ . (2.5)

Then,
∫

Bz ẑ · n̂ sinαldldϕ =
∮

∂L

~A · sinαl ~dϕ (2.6)

Choosing ~A(l, ϕ, z) = (0, Aϕ, 0), it yields

sin2 α
∫

Bzldldϕ = sinα
∮

∂L
Aϕldϕ (2.7)

where we have considered ẑ · n̂ = sinα. Then,

Aϕ =
Bzl

2
sinα . (2.8)

We can now write the Schrödinger equation for a charged particle confined to the
surface of a cone immersed in an external magnetic field in the z−direction. From
(2.1), the map of a cone is ~X(l, ϕ) = (l sinα cosϕ, l sinα sinϕ, l cosα). The coeffi-
cients of the induced metric are given by [18]

g11 = Xl ·Xl =
∂ ~X

∂l
· ∂

~X

∂l
= 1 , (2.9)

g12 = Xl ·Xϕ =
∂ ~X

∂l
· ∂

~X

∂ϕ
= 0 , (2.10)

g22 = Xϕ ·Xϕ =
∂ ~X

∂ϕ
· ∂

~X

∂ϕ
= l2 sin2 α . (2.11)

So, the metric tensor and its inverse are

gij =

(

1 0
0 l2 sin2(α)

)

(2.12)
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and

gij =

(

1 0
0 1

l2 sin2(α)

)

, (2.13)

respectively. We consider the Hamiltonian for a charged particle as

Ĥ =
1

2m
(p̂− eÂ)2 . (2.14)

In order to ensure the hermiticity of radial momentum operator, p̂l, it must act on
the radial wave functions as

p̂lψ(l) = −i~
(

∂

∂l
+

1

2l

)

ψ(l). (2.15)

We refer the reader to reference [19] to go into the details of this last relation. So,
we achieve

Ĥ = − ~
2

2m





1

l

∂

∂l

(

l
∂

∂l

)

− 1

4l2
−
(

− i

l sinα

∂

∂ϕ

− e sinαBzl

2~

)2


 (2.16)

for the Hamiltonian for the particule moving on the cone. We have used p2
l = −~

2∇2
l

, with ∇2
l ≡ 1√

g
∂l

√
gg11∂l, g = det(gij) = l2 sin2 α and pϕ = − i~

l sin α
∂ϕ. It is important

to notice that the Schrödinger equation for a quantum particle on curved surfaces
exhibits a scalar potential which describes the interaction of quantum particles with
geometry. It was shown in [20] that this potential does not couple with the magnetic
field. It is given by

VS = − ~
2

2m

(

M2 − K
)

= − ~
2

2m
(k1 − k2)

2 . (2.17)

In these expressions, k1 and k2 are the principal curvatures, M ≡ 1
2
(k1 + k2) is the

mean curvature and K ≡ k1k2 is the Gaussian curvature of a given surface [18].
This potential was first derived in [21]. This way, the Schrödinger equation is
[

Ĥ + VS

]

Ψ(l, ϕ) = EΨ(l, ϕ). So, we have

− ~
2

2m





1

l

∂

∂l

(

l
∂

∂l

)

− 1

4l2
−
(

−i
l sinα

∂

∂ϕ

− e sinαBzl

2~

)2


Ψ(l, ϕ)+VSΨ(l, ϕ) = EΨ(l, ϕ) .

(2.18)
We may calculate M and K by the formula [18]

M =
1

2

eG− 2fE + gE

EG− F 2
(2.19)

and

K =
1

2

eg − f 2

EG− F 2
, (2.20)

respectively. For a cone, E = g11 = 1, F = g12 = 0, G = g22 = l2 sin2 α, e = ~n· ∂2 ~X
∂ϕ2 =

0, f = ~n · ∂2 ~X
∂ϕ∂l

= 0 and g = ~n · ∂2 ~X
∂l2

= l sinα cosα. This way, M = cos α
2 sin αl

and K = 0.
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By considering the wave function as Ψ(l, ϕ) = Ψ(l)eijϕ, with j = 0,±1,±2, ..., we
arrive at

− ~
2

2m





1

l

d

dl

(

l
d

dl

)

−
1
4

+ µ2

sin2 α

l2



Ψ(l) +
mw2l2

2
Ψ(l) = ΣΨ(l) (2.21)

where µ2 = j2 − 1−sin2 α
4

, ω = (ωc/2) sinα, with ωc = eBz

m
the cyclotron frequency,

and
Σ = E + j~ω . (2.22)

This differential equation describes a two dimensional quantum oscillator on a coni-
cal background. This problem was addressed in [22] for a circular double cone. Since
we get the same differential equation found in [22], the wave functions are generally
given by

Ψ(l) = C |l|s exp(−mω2l2

2
)U
(

s

2
+

1

4
− E

2ω
, s+

1

2
,mωl2

)

(2.23)

with

s =
1

2



1 ±
√

1 +
4µ2

sin2 α



 (2.24)

and C being the normalization constant. U(a, b, c) is the Kummer function [23], see
Appendix D.

In the case of 2DEG on a cone, the range of the coordinate l is 0 < l < +∞,
whereas that for a circular double cone it is −∞ < l < +∞ . In order to have
normalization of the wave function, we have

lim
l→∞

Ψ(l) −→ 0. (2.25)

If we consider the equations on the Appendix D, and
∫ ∞

0
|ψ|2 ldl < ∞, (2.26)

we get
∫ ∞

0
|ψ|2 ldl = Al

′2s+2, (2.27)

where A is a constant.
Before doing any further analyses, we must mention that, as it was argued in Refs.
[15, 22], that the tip of the cone corresponds to a singularity and the quantum
dynamics requests self-adjoint extensions [24, 25], in contrast with the double cone
case, where such singular effects can not show up. Notice that the case of quantum
particles around a double cone is similar to the one where we have quantum particles
on a cone without the coupling between the wave functions and a singular curvature.
This is a situation without δ-function potentials, which correspond the so-called
Friedrichs extension [24]. It is characterized by the following boundary condition,

lim
l→0

l∂lψ(l) = 0. (2.28)

This condition means that, although we have a conical tip, the wave functions are
regular at l = 0. When we consider the δ−function potential, the quantum dynamics
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request self-adjoint extensions since the wave functions now are irregular at l → 0
[26]. In what follows, we evoke the results of [22] for the regular case and after that
we discuss what is going to change when we take into account the wave functions
being irregular at the conical tip.

For electrons on a cone without the coupling with the singular Gaussian curva-
ture, the parameter s above must be just that with a plus sign. Notice that, for
positive s, (2.26) goes to zero as l −→ 0. Since we do not have singularity, this
means that the wave functions are regular at the conical tip. So, the eigenvalues are
given by

Σj,n = 2~ω



n+
1

2
+

1

4

√

1 +
4µ2

sin2 α



 . (2.29)

Combining this equation with (2.32), we arrive at the Landau levels for electrons on
a cone, that is,

Ej,n = ~ωc sinα



n+
1

2
+

1

4

√

1 +
4µ2

sin2 α
− j

2



 . (2.30)

The problem addressed here has an important difference from that investigated in
[22]. First of all, Eq. (2.30) has an extra piece proportional to − j

2
. Also, the term

inside the square root in Eq. (2.30) shows the parameter µ2 ( instead of just j2)
which can never be null for integer values of j. If we take j = 0 in equation (2.21) we
get the same result as taking j → 0 in (2.30), in contrast with [22], where the results
are different. This solution corresponds to the case of a harmonic oscillator on a
meridian of the cone. This difference comes from the interaction with the geometric
potential VS which leads to an inverse square distance dependent quantum potential.

We now turn our attention to the case where there is the coupling between the
wave functions and the singular Gaussian curvature. The problem concerning the
quantum harmonic oscillator with singularities was addressed in Ref. [26]. Every-
thing we have done so far remains the same but in order to have irregular wave
functions as l → 0 that are still square integrable, the parameter s (2.24) now admit
both signs, plus and minus. The case with minus sign correspond to wave solutions
which are irregular at the tip of the cone. In order to have

∫ ∞

0
|ψ|2 ldl = Al2s+2 −→ 0, (2.31)

we must impose the constrain
−1 < s < 1 , (2.32)

to guarantee that the wave functions are square integrable. Whenever we have
singularity, this conditions must happen [27]. In order to fulfill (2.32), the only
possible value for the angular momentum is j = 0. Then, the Landau Levels split
as

E+
0,n = ~ωc sinα



n+
1

2
+

1

4

√

2 − 1

sin2 α



 (2.33)
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and

E−
0,n = ~ωc sinα



n+
1

2
− 1

4

√

2 − 1

sin2 α



 . (2.34)

In summary, without singular effects, the Landau levels are those obtained as
(2.30), with j = 0,±1,±2, .... If the singular Gaussian curvature plays a role, than
the only possibility will be j = 0. In the former case, the degeneracy is infinitely
broken in comparison to the flat case (j = 0,±1,±2, ... ) and in the latter one, each
Landau level is splited twice. We sketch the Landau levels for both problems in
figure 2.2.

In this section we addressed the Landau levels for a 2DEG on both regular and
irregular cases. We have seen some fundamental differences which could be detected
in a Hall measurement. So, we discuss the quantum Hall effect in what follows.

a b

Figure 2.2: (a) Some Landau levels for a 2DEG on a cone without singular effects and
(b) with singular effects(we considered just three filled angular momentum states,
j = −1, 0, 1). In both cases, α = π/3 rad.

2.2 Hall conductivity

In this section, we compute the Hall conductivity of a 2DEG on a cone. We consider
just the integer quantum Hall effect, which consists of a quantization of the con-
ductivity and appearance of plateaus at particular values of the external magnetic
field. It manifests at low temperatures. We take into account just the fundamental
state, T = 0. Each Landau level contributes one quantum of conductivity to the
electronic transport. If n0 Landau levels are completely filled, the Hall conductivity,
σH , will be given by

σH = −n0σo , (2.35)
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where σo ≡ e2/h is the quantum of conductivity, e is the electron charge and h is
the Planck,s constant. The Hall conductivity is independent of a particular sam-
ple geometry[28] but a particular geometry like a cone changes the position of the
plateaus and their widths. This is what we are going to see bellow.

We start the calculations determining n0 for a specific value of magnetic field.
This is achieved by counting how many states are occupied bellow the Fermi energy,
EF . We compare EF with the Landau levels showed in figures 3.1, making it equal
to the highest Landau level filled. Next, we determine the quantity of magnetic field
required to move the Hall conductivity from −n0σo to −(no − 1)σo. In doing that,
we are, in fact, determining the size of the plateaus at zero temperature for a specific
no. Continuing this procedure, we can then plot the Hall conductivity versus the
plateaus. In our calculations, we start at B = 10T .

Figure 2.3: Hall conductivity in flat space (full line) and on the cone: with singu-
larity (dot line) and without singularity (dash line). We see that the plateaus of
conductivity on the cone are shifted to higher magnetic fields in both cases. We
can see clearly that the singular boundary conditions change significantly the Hall
conductivity profile. We considered α = π

3
rad.

In figure 2.3 we plot the Hall conductivity for three different cases: a flat sample
without singularity and the cone with and without singularity. In the last case we
considered just the filled states j = −1, 0, 1 only. We can observe that we have
intermediate plateaus in this case in comparison to the Hall conductivity on a cone
with singularity. If we take more values of j, which is not allowed for the Landau
levels in the singularity case, we will obtain other intermediate plateaus. Notice that
the plateaus are smaller if we take the cone with singularity in comparison with the
flat case. This difference is even more apparent if we compare the flat case with a
cone without singularity.
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2.3 Impact of the angle α on Hall conductivity of

the double cone

In figure 2.4, we probe the influence of the opening angle α. We compare with the
flat case. We see that we have the same kind of shifting for both cases, i.e., when we
have a little opening angle (π

4
), the plateaus are shifted to higher magnetic fields and

when we have a big opening angle (2π
5

), the plateaus are shifted to smaller magnetic
fields. We can also observe that, for a big opening angle, we approach to the flat
case. With these plots, we can more easily see that we have a reduction of the size
of the plateaus in comparison to the flat case. In analyzing both figures 2.3 and 2.4,
we observe that considering or not the singular effects on the wave functions is an
important issue on a theoretical basis. We hope this fact will eventually be probed
in an experimental point of view.

(a) (b)

Figure 2.4: Hall conductivity on the cone for different opening angles. (a) with
singular effects and (b) no singular effects. Notice again that considering or not the
singularity in the wave functions has important consequences.

2.4 Impact of the geometric potential H for the

double cone

We now move to see the influence of the mean curvature, that is, we probe the two
models we are dealing with for electrons on a curved surface. We consider both cases,
with and without singular effects. In the figure 2.5, we can see that, depending on
the opening angle α, the two models may yield or not different quantitative results.
Indeed, for the singular case and for α = π

3
, the plateaus are shifted to lower magnetic

fields. This happens because of the size of the plateaus, which are smaller when we
consider the mean curvature potential. For α = 2π

5
, taking or not into account the

mean curvature potential does not make any difference. Without singular effects,
the same thing happens. The difference is only that pointed out in figures 2.3 and
2.4.
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(a) (b)

(c) (d)

Figure 2.5: Hall conductivity on the cone with and without the mean curvature
potential M: without singularity, we have (a) α = π

3
and (b) α = 2π

5
, while with

singularity we have (c) α = π
3

and (d) α = 2π
5

. Notice that the difference be-
tween both approaches may be noted depending on the opening angle α which is
considered(see figure 2.6).

Plotting the mean curvature potential M as a function of the opening angle α,
we obtain the figure 2.6. That explains clearly what happens in figure 2.5. Indeed,
when we have a big opening angle, we can see that the mean curvature potential
goes to zero. This is why we have seen in our plots that when we take a big opening
angle, taking or not into account M does not make a big difference, contrary to a
small opening angle. This said, we conclude that depending on the opening angle of
the cone, the difference between the two approaches discussed here for electrons on
curved surfaces will not show up. This fact may happen for other geometries. So,
comparing the mean curvature with the Gaussian curvature first can tell us when it
is important to take it into account in our calculations.

In this first part of our work, we have seen how the geometry of a given sample
can change de Hall conductivity. In the second part, we will study the effect of a
screw dislocation on the Hall conductivity of a 2DEG.
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Figure 2.6: Profile of the mean curvature M depending on the opening angle α.
We can see that, for a smaller values of α, M grows while for higher values of α
approaching π/2, M −→ 0. So, we can see which interval of α the mean curvature
contribution to the geometric potential will be relevant.
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Chapter 3

Integer Quantum Hall Effect in a
medium with a screw dislocation

3.1 Schrödinger equation and Landau Levels

We consider an infinitely long linear screw dislocation oriented along the z−axis.
The three-dimensional geometry of the medium is characterized by torsion which is
identified with the surface density of the Burgers vector in the classical theory of
elasticity. The metric of the medium with this kind of defect is given by[10]

ds2 = (dz + βdφ)2 + dρ2 + ρ2dφ2 , (3.1)

in cylindrical coordinates. In (3.1), β is a parameter related to the Burgers vector
b by β = b/2π . No curvature is induced by this topological defect. Its induced
metric describes a flat medium with a singularity at the origin. The only non-zero
component of the torsion tensor in this case is given by the two form

T 1 = 2πβδ2(ρ)dρ ∧ dφ , (3.2)

with δ2(ρ) being the two-dimensional delta function in flat space. We consider a

constant magnetic field in the z− direction, ~B = Bẑ. We choose the vector potential
in the background space (3.1) as Aφ = Bzρ

2
[11].

The Schrödinger equation for a free particle in a background gµν is given by

−~
2

2m

1√
g
∂µ

√
ggµν∂νΨ = EΨ , (3.3)

where g ≡ det gµν . For electrons in the presence of an external magnetic field, we
have i∂µ → i∂µ − eAµ. Then, the Schrödinger equation for an electron in a medium
with a screw dislocation in a homogeneous magnetic field in the z−direction is

− ~
2

2m∗





1

ρ

∂

∂ρ

(

ρ
∂

∂ρ

)

+
1

ρ2

(

∂

∂φ
− β

∂

∂z

)2


Ψ +

+
i~eBz

2m∗

(

∂

∂φ
− β

∂

∂z

)

Ψ +
e2B2

zρ
2

8m∗ Ψ −

− ~
2

2m∗
∂2Ψ

∂z2
= EΨ . (3.4)
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By considering the wave function as Ψ(ρ, φ, z) = eiℓφeikzzψ(ρ), with ℓ ∈ Z and
kz ∈ ℜ, equation (3.4) yields

− ~
2

2m∗

[

1

ρ

d

dρ

(

ρ
d

dρ

)

− ν2

ρ2

]

ψ − ν~eBz

2m∗ ψ +

+
e2B2

zρ
2

8m∗ ψ = En,ℓψ , (3.5)

where En,ℓ = E− ~
2k2

z

2m∗
and ν = ℓ−βkz. This equation describes the two-dimensional

quantum harmonic oscillator in the presence of a screw dislocation.
Let us point out that the eq. (3.5) looks like the same as in the case of a

disclination [14]. The only difference is that in the case of a screw dislocation the
parameter ν is related to the Burgers vector while in the case of a disclination it is
related to the deficit/excess angle α characterizing the defect(ν = l/α). So, the two
problems can be treated on completely equal footing. However, while a disclination
is related to lattice rotations, a dislocation is related to lattice translations and the
influence on the Hall effect will be different.

The energy eigenvalues are

En,ℓ = ~ωc

(

n+
|ν| − ν

2
+

1

2

)

, (3.6)

where n = 0, 1, 2, ... and ℓ = 0,±1,±2, ... The respective wave functions, by us-
ing the same method of the first chapter, which will give us the effect of a screw
dislocation on the Hall conductivity of a 2DEG are

ψ(ρ) = C exp
(

−mωc

4~
ρ2
)

ρνU
(

−n, ν + 1,
mωc

2~
ρ2
)

, (3.7)

where C is a normalization constant.
As we have said above, the screw dislocation induces a singularity in the medium.

This means that the electrons are moving in a sample showing singularity. The
investigation of quantum systems in this scenario has been carried out over the
years [29]. In reference [13], the harmonic oscillator in spaces with singularities was
addressed and the effect of such singularities is to restrict the range of allowed values
for the effective angular momentum ν, that is,

−1 < ν < 1 . (3.8)

This relation holds in order to satisfy the square-integrable condition of wave func-
tions, that is,

∫ ∞

0
|ψ|2 ρdρ < ∞ .

Notice that the degeneracy of the LL is broken due to the torsion parameter β.
In fact, if β ≡ 0,

En,ℓ = ~ωc

(

n+
|ℓ| − ℓ

2
+

1

2

)

. (3.9)

If ℓ > 0, we have En = ~ωc (n+ 1/2) . On the other hand, if ℓ = − |ℓ|, then we
have the same expression above with n changed by n + |ℓ|, with n and |ℓ| being
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non negative integers. From a theoretical point of view, the electrons on an inter-
face as showed in figure 3.1 are confined by an infinite square well potential in the
z−direction (0 ≤ z ≤ d). This way, we have kz = lπ

d
, where l = 1, 2, 3... Notice that,

in contrast with either the flat sample or a sample with disclination, this transverse
mode now contributes to Hall conductivity. In the Landau levels (3.6), the effective
angular momentum is

ν = ℓ− β
lπ

d
. (3.10)

a b

Figure 3.1: a) Cylindrical portion of a 3D solid showing the dislocation. b) Interface
on a 3D solid with a screw dislocation. The line crossing the center of the figure
represents the dislocation core.

In order to complete our analysis, we will consider a third type of defect called
dispiration. It corresponds to a singular curvature and a singular torsion along the
defect line. This defect is described by the following metric[30],

ds2 = (dz + βdφ)2 + dρ2 + α2ρ2dφ2 . (3.11)

Notice that we have just the inclusion of the parameter α(the deficit/excess angle)
in metric (3.1). Then, the parameter ν is now given by

ν =
ℓ− β lπ

d

α
. (3.12)

If α = 1, which means no curvature, we recover expression (3.10).
In what follows, we are interested in the physical consequences due to the pres-

ence of a screw dislocation on a 2DEG. We will consider the case α = 1 first. The
influence of α was investigated in reference [14] but we will show here how the Hall
effect is influenced by the presence of both a disclination and a screw dislocation.

3.2 Hall Conductivity

In this section, we first compute the Hall conductivity on a 2DEG showing a screw
dislocation characterized by the parameter β. As we have pointed out before, the
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Hall conductivity is independent of a particular sample geometry. As in the previous
chapter, we have

σH = −jσo , (3.13)

Consider that only the fundamental state in the transverse direction is occupied.
From the condition (3.8) , we have

−1 + π
β

d
< ℓ < 1 + π

β

d
. (3.14)

Taking into account only the case π β
d
< 1, the possible values for the angular

momentum are ℓ = 0, 1. For each Landau level n, we have

En,1 = ~ωc

(

n+
1

2

)

, (3.15)

for ℓ = 1 and

En,0 = ~ωc

(

n+ π
β

d
+

1

2

)

, (3.16)

for ℓ = 0.
From these two last equations, we can see how the degeneracy of the Landau

Levels is broken, that is, each Landau level split in two other levels. In figure 3.2
we show how they are distributed.

Figure 3.2: Landau Levels distribution for π β
d
< 1. The solid lines are for En,1 =

~ωc

(

n+ 1
2

)

and the dotted lines are for En,0 = ~ωc

(

n+ π β
d

+ 1
2

)

(the energy spacing

depends on the ratio π β
d
).

In equations (3.15) and (3.16), we have n = 0, 1, 2, 3... Performing the transfor-
mation n = no − 1, with no = 1, 2, 3..., equations (3.15) and (3.16) yield

no =
[

1

4
+

EF

2~ωc

]

(3.17)
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and

n
′

o =

[

−1

4
− πβ

2d
+

EF

2~ωc

]

, (3.18)

respectively([x] is the integer part of x). Suppose that, for some value of the external
magnetic field, we have En,0 = EF (dot lines in fig.2), with n = no − 1. As we raise
the magnetic field intensity, the next LL which will coincide with the Fermi energy
is En,1, with n = no − 1(solid lines in fig.2). This situation corresponds to a Hall
conductivity being diminished by one quantum σo. From equation En,1 = En,0 = EF ,
we find the plateau width in this transition as

∆B =
m∗EF

~e

b
2d

(

no − 1/2 + b
2d

)

(no − 1/2)
. (3.19)

As we continue to raise the external magnetic field intensity, one quantum of con-
ductivity σo is diminished again and we have transitions from En+1, 1 = EF (solid
lines in fig.2) to En,0 = EF (dot lines in fig.2). In this case, the plateau width is

∆B
′

=
m∗EF

~e

1 − b
2d

(

no − 1/2 + b
2d

)

(no + 1/2)
, (3.20)

We have considered that β = b/2π. The two types of plateaus found above have
lower widths in comparison to the flat case. Notice that if b ≡ 0, ∆B = 0 and ∆B

′

coincides with the plateau width for a flat sample without defects.
For a sample with a dispiration, the condition (3.8) yields

−α+ π
β

d
< ℓ < α+ π

β

d
. (3.21)

For a deficit angle(α < 1), the LL,s are

En,0;α =
~ωc

α

(

n+
b

2dα
+

1

2

)

. (3.22)

Notice that there is no energy splitting in this case since condition (3.8) allows ℓ = 0
only. However, the energy spacing is affected and the plateau width is given by

∆B =
αm∗EF

~e

1
(

no + b
2dα

)2 − 1
4

. (3.23)

Without the screw dislocation (b ≡ 0), expression (3.23) will be the same as that
found in reference [14] for a deficit angle α. In that reference, it was observed that
the defict angle decreases the quantum Hall plateau widths, shifting the steps in the
Hall conductivity to lower magnetic fields as wel as the Hall conductivity to lower
values. The presence of a screw dislocation in this case changes only a plateau width
for a specific value of deficit angle α. The screw dislocation diminishes the plateau
width, shiffitng it even more to lower magnetic fields (see fig. 3.2).

In Figure 3.2 we plot the Hall conductivity for some values of the ratio b/d. We
also plot σH in the case without screw dislocation, which we call flat case. All the
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graphics start with the same filling factor at B = 10T . This happens because of the
formula (3.17) which is the same as in the flat case. We can see that the steps on
the Hall conductivity shift to lower magnetic fields but there is no shifting in the
Hall conductivity.

As we raise the ratio b/d, the plateaus (3.19) get higher and the ones given by
(3.20) diminish. On the other hand, as b/d → 0, the influence of a screw dislocation
as well as the thickness of the sample on the Hall conductivity approaches the Hall
conductivity for a sample without defects. For an excess angle, the situation is quite

Figure 3.3: Plot of eq. (3.23) for a deficit angle α = 0.7 and no = 15. The screw
dislocation diminishes the plateau width, shiftting it to lower values. The Hall
conductivity remains the same, that is, σH = 15σo. The same occurs at any no.

different. The condition (3.8) yields ℓ = −1, 0, 1. This means that each LL with
index no splits as

Eno,1 =
~ωc

α

(

no − 1

2

)

,

Eno,0 =
~ωc

α

(

no +
b

2dα
− 1

2

)

,

Eno,−1 =
~ωc

α

(

no +
b

2dα
+

1

α
− 1

2

)

. (3.24)

Their plot is depicted in Figure 3.2. Consider EF = Eno,1. As we raise the magnetic
field intensity, the next lower LL coinciding with EF will be Eno−1,0. Continuing to
raise the magnetic field, a transition goes from this level to Eno−1,−1 and the next
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Figure 3.4: Hall conductivity versus magnetic field B for different values of the
ratio b/d. The quantum Hall plateau widths decrease and the steps in the Hall
conductivity are shifted to lower magnetic fields in comparison to the flat case(b/d ≡
0). Notice that there is no shifting in the Hall conductivity.

one goes from this level to Eno−1,1. We then get three different plateaus,

∆B1 =
m∗EF

~e

α− 1 − b
2d

(

no + 1
α

+ b
2dα

− 3
2

) (

no − 1
2

) ,

∆B2 =
m∗EF

~e

1
(

no + 1
α

+ b
2dα

− 3
2

) (

no − 3
2

+ b
2dα

) ,

∆B3 =
m∗EF

~e

b
2d

(

no − 3
2

) (

no − 3
2

+ b
2dα

) . (3.25)

In Figure 3.5, we see that the presence of an excess angle causes a shifting of the
steps to higher magnetic fields and the Hall conductivity is shifted to higher values
as well. Notice that at 10T , the filling factor for a sample without a disclination
is 17 while in the presence of it is 22. This plot was done considering equations
(3.25). For a dispiration, there are three different expressions for the plateaus. If
we consider the absence of screw dislocations, equations (3.25) will be given by
∆B1 = ∆B2 6= ∆B3. That is, we have only two types of plateaus, as it was found
in reference [14] where just the influence of disclinations was investigated. On the
other hand, if we take α = 1 in equations (3.25), we recover those expressions for a
screw dislocation, (3.19) and (3.20).

31



a b

Figure 3.5: a) Landau levels on a sample showing a dispiration and b) Hall conduc-
tivity on a 2DEG with a screw dislocation(lower curve) and with a dispiration(upper
curve). Notice that while the screw dislocation shifts only the plateaus to lower mag-
netic fields(see figure 4), the presence of a disclination with an excess angle α makes
the Hall conductivity shift as well.
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Conclusion

In this work we studied, for the first time, the integer quantum Hall effect on a cone.
We have shown that considering the coupling between the wave functions and the
singular scalar curvature (the conical tip), the profile of the Hall conductivity versus
the external magnetic field modifies significantly.
On a first work, we have consider the range of coordinate l for the cone as 0 < l <
+∞ and calculated the Shrodinger equation to obtain the Landau levels and finally
obtain the values of Hall conductivity.
Then, for the cone without singularity at the tip, or with regular wave function,
we have the appearance of infinite degeneracy lifting introduced by the angular mo-
mentum j, and for the cone with singularity, or irregular wave funtcion, we have just
the split of the energy levels because of the plus and minus signs in its equation.
Because of this degeneracy lifting, we obtain an infinite number of small Hall con-
ductivity plateaus for the case of the cone without singularity. The Hall conductivity
then decreases rapidly in a smaller interval of magnetic field, than in the case of cone
with singularity or the simple case.
By studying these two cases in more details, i.e. by varying some parameters such
as the opening angle α of a cone, or removing the geometric potential given by the
mean curvature, we have noticed that it is very easy to vary the Hall conductivity.
In fact, the curvature reduces the range of the magnetic field that we need to obtain
our plateaus.
We have also seen, by changing the opening angle α of the cone, that we have a
shifting of the plateaus of the Hall conductivity.
To finish, we have considered two different models for electrons on a curved surface.
One contains an effective scalar potential, proportional to the Gaussian curvature
on the surface, while the other one shows an effective scalar potential which con-
tains both the Gaussian and mean curvature on the surface. So, we have seen that
the profile of the Hall conductivity shows discrepancies when we compare the two
theories, depending on the opening angle of the cone.
In our work, if we consider the case without any singularity at the tip, we can ex-
tend our investigation to the double cone case, by taking the range of coordinate
−∞ < l < +∞.

On a second work, we have studied the effect of a screw dislocation on the Hall
conductivity. It was shown that the thickness of the sample changes the position
of the quantum Hall plateaus. We have shown that the torsion of the medium, β,
decreases the quantum Hall plateau widths and shifts the steps in the Hall conduc-
tivity to lower values of magnetic fields. However, the Hall conductivity itself is not
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shifted. We noticed the appearance of two types of plateaus in this case, like the
case of the cone without singularity. This has happened because of the split of each
Landau level in two other levels, for ℓ = 0, 1.
In order to appreciate the presence of both, a screw dislocation and a disclination,
we have considered a 2DEG with a dispiration. The steps in the Hall conductiv-
ity shift to lower values of magnetic fields when we have a deficit of angle(α < 1)
[14]. The screw dislocation diminishes the plateau width for a specific value of a
deficit of angle but does not shift the Hall conductivity. In the case of an excess
angle(α > 1), the presence of a screw dislocation induces three different expressions
for the plateaus since the Landau levels now splits for ℓ = −1, 0, 1. In this case,
there is a shift of the steps to higher magnetic fields.

In summary, the study carried out here can be realized in usual semiconductors.
However, it shows important features if one has intention to deal with non planar
2DEG in other class of materials.

In this report, we have tried to take into account some geometric parameters to
show how the inclusion of geometric factors is important and how the results can
be different.
The theory based on the da Costa approach (with the presence of mean curvature)
is a result of particle confinement and it is the same for electrons and holes. A
similar confining procedure for relativistic carriers in graphene was first addressed
in [33]. From the results we addressed here, we may note that the model one takes
to investigate carries on to curved graphene is going to be relevant. Without the
confinement procedure, which in our case led to the mean curvature contribution
to the quantum Hall effect, the theory may not fit well the experiments on curved
2DEG. In the case of graphene cones[34], the conical geometry, which appears due to
the presence of topological defects, must be investigated carefully since the singular
Gaussian curvature may also affect the electronic transport in this material.

In performing this study, we hope to provide some answers about the behavior of
the Hall conductivity in a particular geometry. We also hope that these theoretical
bases can be reused for an experimental application.
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Appendix A

Quantum mechanics on curved
surfaces

In the two-dimensional case, it is interesting for us to study the curvature effects,
for example the curvature effects on the conductance and on the magnetization.
Actually, we have explained the flat case. But it is more interesting to investigate
in Non-Planar 2-Dimensional Electron Gas (NP2DEG). Obviously, when we study
a curved surface, that introduces new parameters to be taken into account.
Effectively, for the case of a curved surface, we can used several kinds of approaches.
Let us consider both of them on a conic surface. In the first one, we consider that
the charge carries are bound to the surface by a constraining potential, and not in
the second approach. Let us briefly describe their general ideas.

A.1 The da Costa approach

The first approach is based on the da Costa’s theory, published in 1981. This theory
is applied to a surface with such a small thickness that we consider d → 0. The
general idea on this theory it is deriving the Schrödinger equation of a free particle
constrained to move on a curved surface [31], starting from the 3D and then reducing
it to a 2D equation by a confining procedure. This constraint is an external potential
limiting the motion of non-interacting electrons to a thin interface, with constant
thickness. Then we get the following Schrödinger equation [32]

− ~
2

2m

∂2χn

∂q2
n

+ V (qn)χn = Enχn, (A.1)

with qn the normal coordinate, and V (qn) the potential that confines the particle to
the thin interface. In the coordinates of a curved surface, we have

1

2m

[

− ~
2

√
g
∂µ (

√
ggµν∂ν)

]

Ψ + VDCΨ = EnΨ, (A.2)
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where gµν is the contravariant component of the metric tensor, g = det gµν , and VDC

the scalar geometric potential, whose expression is

VDC = − ~
2

2m

(

H2 −K
)

, (A.3)

where H = (κ1+κ2)
2

it is the mean curvature, and K = κ1κ2 is the Gaussian curvature
of the surface, while κ1 and κ2 are the principal curvatures of the surface.

A.2 The Dirac approach

Now, if we take the intrinsic second order Dirac theory, for a 3-dimensional space,
based on the Klein-Gordon equation, without the constraining potential, like the
following equation

− ~
2

2m
∇2

‖ψ +
~

2

4m
Rψ = Ecψ, (A.4)

with ∇‖ is the usual covariant derivative acting on a scalar function, ψ a definite
spin-state, Ec = E−m the classical energy mesure and R the Ricci curvature scalar
in the static surface. We confined in 2D, with R = 2K, where K is the Gaussian
curvature of a surface. So, we obtain the effective potential

VKG =
~

2

2m
K, (A.5)

We obtain an expression for the geometric potential different from the first case.
But for both, we have

H =
1

2

eG− 2fE + gE

EG− F 2
(A.6)

and

K =
1

2

eg − f 2

EG− F 2
, (A.7)

knowing that (E,F,G) and (e, f, g) are respectively the coefficients of the first fun-
damental form (I = E · du2

1 + 2F · du1du2 + G · du2
2) and the second fundamental

form (II = e · du2
1 + 2f · du1du2 + g · du2

2) [18].

The biggest difference between VDC and VKG is that the first one is only attrac-
tive and the second can be attractive or repulsive [32]. But with this example briefly
described, we can see that taking into account or not the geometric potential can
change our results, because calculating geometric potential allows us to say that we
are in a curved geometry, and not on a planar geometry.
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In this examples, we have considered just the case for the free electrons. Into the
scope of this study, if we consider the electrons in the presence of magnetic field, we
have to operate the change : ∂µ −→ ∂µ − eAµ.
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Appendix B

Details of calculation of the
Schrödinger equation for a cone

We have seen in the section 1.3 that the Hamiltonian for a charged particle is

Ĥ =
1

2m
(p − eA)2. (B.1)

Or we know that p = (pl, pϕ, pz) and A = (0, Bzlsinϕ
2

, 0), so if we develop our
equation, we get

Ĥ =
p̂l

2

2m
+

1

2m
(p̂ϕ − eÂϕ)2. (B.2)

By using p2
l = −~

2∇2
l , with ∇2

l ≡ 1√
g
∂l

√
gg11∂l, g = det(gij) = l2 sin2 α, where

gij is the metric tensor, and pϕ = − i~
l sin α

∂ϕ, we obtain

Ĥ = − ~
2

2m

1

l

∂

∂l

(

l
∂

∂l

)

− 1

2m

(

− i~

l sinα

∂

∂ϕ
− eBzl sinα

2

)2

. (B.3)

But in order to ensure the hermiticity of radial momentum operator, p̂l, it must
act on the radial wave functions as

p̂lψ(l) = −i~
(

∂

∂l
+

1

2l

)

ψ(l). (B.4)

For more details, see [19].
Finally we obtain the Schrödinger equation

Ĥ = − ~
2

2m





1

l

∂

∂l

(

l
∂

∂l

)

− 1

4l2
−
(

− i

l sinα

∂

∂ϕ

− e sinαBzl

2~

)2


 . (B.5)
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Appendix C

Calculation for the geometric
potential VS

Let us now consider the geometric potential Vs = − ~
2

2m
(H2 − K), where H and K

are respectively the mean curvature and the Gaussian curvature. First, we need to
calculate the first fundamental form [18] :

I = E · du2
1 + 2F · du1du2 +G · du2

2 (C.1)

To know the coefficients E, F and G, we have to use the metric tensor E = g11 =
1, F = g12 = 0 and G = g22 = l2 sin2(α), so :

I = dl2 + l2sin2(α) · dϕ2 (C.2)

Now, we get the second fundamental form :

II = e · du2
1 + 2f · du1du2 + g · du2

2 (C.3)

with e = ~n · ~Xϕϕ = ∂2 ~X
∂ϕ2 = −l sin(α) cos(α), f = ~n · ~Xϕl = ∂2 ~X

∂ϕ∂l
= 0 and g = ~n · ~Xll =

∂2 ~X
∂l2

= 0.

II = −l sin(α) cos(α) · dϕ2 (C.4)

Let us calculate the Gaussian curvature :

K = det(II) =
eg − f 2

EG− F 2
= 0 (C.5)

and the mean curvature :

H =
1

2
tr(II) =

1

2

eG− 2fE + gE

EG− F 2
= − cos(α)

2l sin(α)
(C.6)

So the geometric potential is :

Vs =
−~

2

8m

cos2(α)

l2 sin2(α)
=

−~
2

8m

(1 − sin2(α))

l2 sin2(α)
. (C.7)
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Appendix D

Kummer’s function

To resolve this kind of Schrödinger equation (2.18), we take into account a confluent
hypergeometric function, more precisely the generalized hypergeometric series M

M(a, b, z) = 1 +
az

b
+

(a)2z
2

(b)22!
+ ...+

(a)nz
n

(b)nn!
+ ... (D.1)

If we consider just the first order, or (a)0 = 1, we obtain M(a, b, z) = 1.
The Tricomi confluent hypergeometric function U(a, b, z) introduced by Francesco
Tricomi (1947). The function U is defined in terms of Kummer’s function M by

U(a, b, z) =
π

sin(πb)

(

M(a, b, z)

Γ(1 + a− b)Γ(b)
− Z1−bM(1 + a− b, 2 − b, z)

Γ(a)Γ(2 − b)

)

(D.2)

By combining with the equation (D.2), we obtain for the variable (a, b, z), the values










a = s
2

+ 1
4

− E
2ω

b = s+ 1
2

z = mωl2 = γl2
, (D.3)

and we consider C = π
sin(πb)

.
We finally have

U(a, b, z) = Cl−s





ls

Γ(1 + a− b)Γ(s+ 1
2
)

− γ
1

2
−sl−s+1)

Γ(a)Γ(3
2

− s)



 . (D.4)

This series, in order to have normalization of the wave function, must be a polyno-
mial of degree n, where n is an integer, we obtain for each case a = −n, or

s

2
+

1

4
− E

2ω
= −n, (D.5)

like explained in [35].
So, we have Γ(a) = ∞, and the second part of our equation (D.4) is null. We have

U(a, b, z) = C
1

Γ(1 + a− b)Γ(s+ 1
2
)
. (D.6)

We obtain a convergent function for each value of s.
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